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Heat transfer across rough surfaces 
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Mechanics of Fluids Department, University of Manchester 

(Received 13 July 1962) 

It is argued that the heat transfer between a roughened surface and a stream of 
incompressible fluid flowing over it is dependent on both the viscosity and 
thermal conductivity of the fluid even when the roughness is large enough for 
viscosity to have ceased to affect the skin friction. 

Concentrating on closely spaced roughness, sufficiently large for the skin 
friction to be independent of Reynolds number, a simple model is constructed 
of the flow near the surface. It consists of horseshoe eddies which wrap them- 
selves round the individual excrescences and trail unsteadily downstream; the 
eddies are imagined to scour the surface and thereby to transport heat between the 
surface and the more vigorous flow in the neighbourhood of the roughness crests. 
Taken in conjunction with Reynolds analogy between temperature and velocity 
distributions in the fluid away from the surface, the model leads to an expression 
for the rate of heat transfer which contains a function of the roughness Reynolds 
number and the Prandtl number of the fluid whose detailed form is found by 
appeal to the limited experimental data available. An order-of-magnitude 
argument suggests that the functional form established empirically is consistent 
with the assumed model of the flow close to the surface. 

The object of the work is to establish a basis for the analysis of experimental 
data and for their extrapolation with respect to Reynolds number and Prandtl 
number. 

1. Introduction 
The increase in the rate of heat transfer caused by roughening a surface exposed 

to a turbulent stream of fluid is less than the corresponding increase in skin 
friction, a fact which has been long established by experiment and one that 
takes little ingenuity to explain in broad terms. For the rate of heat transport 
in the immediate neighbourhood of the surface, no matter how irregular it might 
be, is controlled by a purely molecular property of the fluid, its thermal con- 
ductivity, whereas the shear stress, augmented by the roughness, is transmitted 
to the surface as a form drag on the individual asperities. To put the matter in 
a slightly Merent  way, however much the heat transfer capacity of the fluid 
away from the surface is increased by the roughness-generated turbulence, heat 
cannot in fact be transferred at a rate greater than conduction into the surface 
will allow; no such restriction on the shear stress and skin friction, freed from 
a dependence on molecular transport properties if the roughness is large enough, 
exists. 

An immediate consequence of this elementary argument is that the rate of 
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heat transfer must be a function of both Reynolds number and Prandtl number 
in as much as they reflect a dependence on molecular transport properties. 

Our object here is to construct a model of the flow adjacent to the roughened 
surface which, taken in conjunction with the Reynolds analogy between tem- 
perature and velocity distributions in the outer regions of the fluid, may be used 
to deduce from existing experimental data the form of the Reynolds number and 
Prandtl number dependence. In  this way it is hoped to provide a basis for the 
analysis of future experiments on particular surfaces and for their extrapolation 
with respect to Reynolds number and Prandtl number. Secondarily and less 
precisely, the model leads to an expression for the rate of heat transfer which, 
with a constant adjusted to give a coarse fit to the existing data, may serve to 
provide an estimate when no specific information is available from experiment. 

2. Model of the flow near the surface 
In  postulating a structure of the flow adjacent to the surface we shall confine 

attention to roughness which is so large that any notion of the existence of a 
viscous sublayer in its ordinary sense must be abandoned, a condition which is 
satisfied if u7h/v > 100, where u, is the friction velocity, h the equivalent sand 
roughness height and v the kinematic viscosity. 

It will further be supposed that the roughness is closely spaced so that the 
shear stress carried by the fluid near the wall and with it the mean velocity in the 
stream direction fall rapidly as the troughs of the roughness are approached: 
for the gradient in shear stress balances the average resistance per unit volume ‘ 
of fluid offered by the roughness elements. (In the other extreme of ‘widely 
spaced’ roughness, not considered here, the main stream of fluid penetrates the 
gaps between the excrescences and is able to transmit its shear stress directly to 
part of the surface.) We may therefore regard the roughness as exposed to a 
highly sheared mean flow in which the streamwise velocity changes by an amount 
of order u, in a distance of order h. 

The well-known characteristic of such a shear flow is the development of 
stream-wise vorticity largely concentrated in horseshoe eddies which wrap them- 
selves around the individual excrescences and trail downstream, as roughly 
sketched in figure 1. The effect of these eddies is to draw fluid down into the valley- 
like regions between adjacent roughness elements which the fluid then scours 
before returning to mix with the main flow near the height of the roughness crests. 
It is suggested that the scouring action forms the basic convective mechanism of 
heat transfer at the wall. In  this respect we might note that in the vicinity of 
the roughness troughs where the mean stream-wise velocity is evanescent the 
flow is predominantly that due to the eddy system, whereas near the crests 
there is a comparatively vigorous stream-wise motion available for receiving 
and rapidly dispersing any temperature difference imparted to it by the eddies. 

Our model is then a very simple one.? It visualizes a kind of shallow sublayer 

A similar model, but manipulated in a different way and using a two-dimensional 
cavity-like flow as the basic eddy structure, has been proposed in a doctoral thesis by 
Dipprey (1961) whose work the authors became aware of only after the preparation of this 
paper had begun. 
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of fluid whose thickness is of order It in the deepest parts of which the motion is 
contributed by horseshoe eddies elongated in directions parallel to the wall and 
threaded between the roughness elements. The eddies are fed with vorticity 
from the stream-wise flow away from the roughness troughs and are subjected 
to frictional resistance at  the solid surface where heat transfer between the fluid 
and wall occurs through conduction. The heat is communicated to the fluid in 
the space near and beyond the roughness crests, which may be pert of a turbulent 
boundary layer or pipe or channel, by the convective motion of the horseshoe 
eddies although, as discussed in 5 7, the fact that the eddies are turbulent (our 
attempt to give a simple description of them in terms of a quasi-steady flow 
conceals the fact that they are strictly an integral part of the turbulencet) 
strongly influences the rate a t  which they can receive heat from or donate heat 
to the wall, especially when the Prandtl number is much different from unity. 

FIGURE 1. Rough sketch of the horseshoe eddies behind an excrescence. 

Regarding the eddies as deeply embedded within the roughnesses does not 
destroy the idea that they are in major part responsible for transporting heat 
between the fluid and wall; although the crests of the roughness may be immersed 
in a more rapidly moving stream, the area they present is small compared with 
the surface area swept by the sublayer. 

Based on the picture of individual roughness elements, it  can be argued that 
the three-dimensional character of the above model is not appropriate to the 
case of two-dimensional roughness formed by (closely spaced) humps or grooves 
running perpendicular to the main stream direction, where the flow might more 
nearly resemble that in a genuine cavity. The acceptance of a model of this latter 
kind for two-dimensional roughness would not affect our qualitative argument 
because it retains the general feature of a surface scour by eddies, in this case 
lying mainly in a direction parallel to the roughness generators, although it has 
to be borne in mind that near the roughness crests turbulent velocity fluctuations, 
which are themselves of order u7, introduce a powerful element of three-dimen- 
sionality into the flow such as to impart to the cavity eddies components of 
circulation in the stream-wise direction. However, the scouring action would 
be performed principally by the circulatory components transverse to the main 
flow and we admit the possibility that the rate of heat transfer could differ 
quantitatively between roughness of two- and three-dimensional shapes (yet 

t Relative to the fixed surface, the eddies form a group with distinct dimensions which 
fluctuate in position in response to the turbulent velocites near the roughness crests and 
whose mean position, strength and direction of circulation are subject to a similar lack of 
uniformity to that of the roughness itself. 

21-2 



324 P. R. Owen and W.  R. Thomson 

the experiments analysed in 5 6 reveal no systematic difference); for that matter, 
since the details of the flow in the sublayer and the surface which it scours must 
depend on the nature of the roughness we could not expect to find a universal 
relation between the heat transfer, Reynolds number and Prandtl number, but 
we suggest that itsform should be similar for all kinds of closely packed roughness. 

3. The rate of heat transfer across the sublayer 
The mean temperature in the fluid at  the outer edge of the sublayer is taken 

to  be Th and the temperature of the solid surface To. Since the characteristic 
thickness of the sublayer is h and the characteristic velocity of the eddying fluid 
in it is u,, the rate of heat transfer across unit area of the layer may be written 

Q = pc~,(Tm-To)B, (1) 

where p is the density of the fluid, c is its specific heat and B is a Stanton number 
which is a function of the local Reynolds number u,h/v and of the Prandtl 
number r. Q may also be identified with the rate of heat transfer across unit 
area of the wall projected into a surface parallel to the main stream. 

A plausible expression for B is 

where a is a constant for a particular roughness. The values of m and n depend 
on the diffusivities in the sublayer; if purely molecular, it may be expected that 
m z 4, n w Q, whereas the effect of a turbulent contribution would be to decrease 
m and increase n. Further discussion of this question is deferred until the 
analysis of the experimental data has been presented. 

4. The rate of heat transfer for a pipe, channeI, or flat plate 
Suppose the inner wall of a pipe of circular cross-section is roughened such 

that the equivalent sand roughness height is h. By this it is meant that when an 
incompressible fluid flows steadily through a pipe of radius a with velocity Urn 
averaged over its cross-section, Urn is related to the friction velocity u, by 

Um/u7 = 8*{2 log,, (a/h) + 1-74], 

provided that u,h/v > 100, Schlichting (1955). h is comparable with, but not 
necessarily equal to, the actual height of the excrescences. 

Applied to the flow in the central core of the pipe, where the velocity profile 
obeys the velocity-defect law, Reynolds analogy yields 

TI and U, are the mean temperature and velocity on the axis r = 0 and T, is the 
friction temperature Q/pcu,, Squire (1953); 6(r/a) is a function, whose value 
when r w a is O(u,/Um), which expresses the small difference between the tem- 
perature and velocity profiles due to the fact that the temperature of the fluid 
varies along the pipe whilst the velocity does not. 
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Near the wall, (3) becomes 

which, eliminating Th by means of (l), leads to 

uh is the (unknown) stream-wise velocity near the outer edge of the roughness 
sublayer. 

We introduce a Stanton heat transfer coefficient defined by 

where Tm is a temperature averaged across a section of the pipe. If it  is defined 
as the ‘mixing cup ’ temperature, as measured in most experiments, 

Squire (1953) has shown that 

Again, S, is a small correction arising from the intrinsic difference between the 
temperature and velocity profiles. 

It follows from (4) and (6) that 

S, can be shown to be proportional to uT/Um if quantities O ( U , / U ~ ) ~  are neg- 
lected. Squire’s numerical results, applicable to a pipe with uniform heat flux 
across its wall, are well represented by S, = 17*8u,/Um. The value of S, for a pipe 
with a wall maintained at a uniform temperature is somewhat different, but since 
the correction is in general small the distinction between the two cases is barely 
worth making in practice, at any rate for a roughened pipe. 

A difficulty lies in assigning a value to U,. Certainly, appeal to the Nikuradse 
velocity profile, U/uT = 2-5 log ( y /h )  + 8.5, is unhelpful. In  the first place, the 
origin of y ,  the distance from the ‘wall’, is uncertain; secondly, the boundary 
between the sublayer and the main stream is only vaguely defined, and its 
distance from the roughness troughs it likely to be a good deal less than h; 
thirdly, and most importantly, the logarithmic law is not valid within the valleys 
between the roughness peaks, nor indeed at all close to the roughness because, 
like the logarithmic profile for a smooth wall, it  is simply the consequence of 
assuming a region of overlap between a ‘law of the wall ’ anda ‘ velocity-defect law ’ 
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and strictly applies to the flow only within this limited region. All that can be 
conjectured is that uh is of order u, and is probably at most a small multiple of 
u, which depends on the details of the roughness. The actual value of Uh/u, for 
a particular kind of roughness may be found approximately from the experi- 
mental data; within the accuracy of both the data and the method of analysis 
it turns out that uh/u, is indistinguishable from zero for almost all the shapes of 
roughness examined and we shall subsequently neglect it. Equation (7) then reads 

Similar expressions for the Stanton number can be found for a channel and 
for the flow over a flat plate. In the case of a channel of half-width a, the resistance 
is given by Urn/u, = 5*7510glO (a;/h) + 5.94, 

provided that u, h/v > 100. Taking the velocity defect law to be 

where y is measured from the wall and U, is the velocity on y = a, a theoretical 
estimate gives 8, = 12.6u,/Um. The Stanton number is then given by 

U, is the velocity averaged across the channel and K,  is, as before, based on the 
difference between the wall temperature and the mixing-cup temperature 

For aflatphte parallel to a stream of velocity U, and temperature Fl the Stanton 
number K,  = &/pcU,(T, - To) is given by 

5. Wind tunnel experiment 
Given experimentally determined values of K,  and u,, the sublayer Stanton 

number can be derived from ( 8 ) ,  (9) or (10) thereby enabling a test of the 
relation B cc (u, h/v)” to be made for each Prandtl number and, if successful, 
the exponent m to be found. 

The dependence of B on Prandtl number is harder to ascertain. Whilst copious 
measurements of the heat transfer across roughened surfaces have been made, 
only a few are relevant to the present analysis in so far as they satisfy the con- 
ditions of dense packing and u,h/v > 100: and they only apply to air (a = 0.72) 
and to water at a temperature corresponding to a Prandtl number of about 7 . t  

t More recently, measurements in water covering several values of the Prandtl number 
have become available and are described in 5 6. 



Heat transfer across rough surfaces 327 

In order to supplement the information it was decided to make measurements 
at  an intermediate Prandtl number, preferably around 3. 

The most convenient technique (with a wind tunnel available) is to observe 
the rate of mass transfer of a feebly volatile substance into an airstream, which has 
the advantage of simplicity and offers the possibility of securing the desired 
Prandtl number without the careful control of temperature that would be 
required in an experiment on the heat transfer to a liquid for which the Prandtl 
number is highly temperature-sensitive. 

Camphor was chosen for the experiment because at  ordinary temperatures it has 
a suitably smallvapour pressure and, for sublimation into an airstream, the Prandtl 
number (ratio of kinematic viscosity to the coefficient of inter-diffusion) is 3.2. 

The arrangement of the experiment was straightforward. A flat plate spanned 
the low-turbulence wind tunnel at  the Mechanics of Fluids Laboratory, which has 
a working section 20 in. square and a maximum airspeed of 1 O O f t .  sec-l, and 
sheets of commercial figured glass were placed on the plate to form rough surfaces. 
They were 26 in. long, 16 in. wide, bounded at their side edges by end-plates, 
and were cut so that a test-piece 3in. square could be easily removed and 
replaced; it was equidistant from the side-edges of the sheets and 15in. down- 
stream from their leading edges which were made round by the addition of 
strips of wooden moulding. A flap attached to the trailing edge of the supporting 
plate could be adjusted to provide a uniform static pressure in the stream 
direction over the working surface of the model. Two types of glass were used: 
one was mottled by irregular pyramids in relief and the other reeded, with the 
generators of the reed running perpendicular to the stream to represent a two- 
dimensional roughness. 

The entire surface of each glass sheet was sprayed with a solution of camphor 
in methylated spirit and, when dry, the test-piece was removed and weighed 
and then put back carefully so as to form a continuous surface with the rest of 
the glass (a small correction was applied to the weight to allow for the loss by 
free convection sustained during the time it took to replace the test-piece and 
adjust the neighbouring sections of glass-ti matter of a few minutes). The wind 
tunnel was started rapidly and run for a sufficient time, between 5 and 15min, 
t o  allow roughly 0 - lg  of the camphor to sublime, during which the boundary 
layer was traversed by a comb of small Pitot tubes, 1 mm. outside diameter, at  
a station just downstream of the test-piece; in this way the friction velocity and 
equivalent sand roughness height of the glass, possibly modified by the presence 
of a thin layer of camphor, could be determined. 

The sublayer Stanton number was found from the relation analogous to (10) 

K,-l = (UlIUA {(UlIUT) +B-% 
K,  is the mass-transfer coefficient GlpU, & where G is the rate of sublimation 
per unit area projected on to a plane parallel to the plate and ?,hs is the (saturated) 
concentration of camphor vapour at  the rough surface. I)--, which is strongly 
temperature-dependent, was obtained from tabulated values of the vapour 
pressure of camphor, such as thosegivenin the Handbook of Physics and Chemistry, 
the temperature of the airstream having been noted during a run. 
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FIGVRE 2. Boundary-layer traverses. 
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The results of the boundary-layer traverses are shown in figure 2 and cover 
a variety of windspeeds and air temperatures. The equivalent sand roughness 
height for the reeded plate is 6.3 mm and for the mottled plate is 6.9 mm. UJuT 
is 11-7 for both. 

The values of 1/B deduced from the measured rates of mass transfer are given 
in table 1. 

u, 
m see-1 

25.0 
18.0 
6.1 

15.3 
23.2 
18.3 
10.3 
13-1 
9.0 
7.9 

33.6 
23.2 
28.6 
12.2 
7.9 

15.5 
25.4 
39.7 
20.8 

Temp. 
"C 

21.0 
21.5 
17.0 
18.0 
18.5 
25.8 
23.2 
20-8 
21-6 
22.8 

20-5 
18.0 
18.5 
18.5 
18.5 
18.5 
24.0 
18.0 
17.0 

Two-dimensional roughness 

1.68 896 
1.74 644 
1.26 218 
1.36 547 
1.41 832 
2.36 656 
1.98 368 
1.68 470 
1.77 323 
1.93 283 

Three-dimensional roughness 

1-66 1314 
1.51 907 
1-44 1118 
1.44 47 7 
1.44 309 
1.44 606 
2.09 993 
1.51 1565 
1.27 774 

K ,  
x 10s B-1 

1-64 40.3 
1.84 34.7 
2.76 19.3 
2.36 30.6 
1.84 34.7 
1.98 31.3 
2.38 24.3 
2.14 28.2 
2.46 23.0 
2.54 21-9 

1-46 46.9 
1.42 48.5 
1.30 53.9 
1.64 40.3 
2-14 28.2 
1.70 38.5 
1.52 44.7 
1.23 57-6 
1.56 43.1 

TABLE 1. Results of the mass-transfer experiment. 

6. The sublayer Stanton number B: analysis of experimental data 
The data available for analysis which satisfy the condition uTh/v > 100 and 

apply to densely distributed roughness can be summarized as follows. 
Nunner (1956); air flow through pipes roughened by circumferential rings: 

u = 0.72 (arrangements with several widths and spacings of the rings were 
tested but only two sets of measurements, those for which the roughness may 
be described as densely packed, are useful here). 

Pinkel (1954); air flow through a pipe roughened by helical rings: CT = 0-72. 
Lancet (1959); air flow through a channel with regular pyramidal roughness: 

0- = 0.72. 
Cope (1941); water flow through pipes with regular pyramidal roughness: 

u NN 7.5. 
To these can be added the sublimation experiments on flat surfaces with two- and 
three-dimensional roughnesses at a Prandtl number of 3.2 described herein. 
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Very recently some detailed and delicately executed heat transfer measure- 
ments by Dipprey (1961) at the California Institute of Technology came to the 
authors' n0tice.t They were made on the flow of water at a, number of different 
temperatures through tubes indented by sand roughness. Dipprey's work is 
especially significant for it not only covers experimentally in a systematic way 
the variation of heat transfer with Reynolds number and Prandtl number but 
puts forward a theoretical model of the sublayer which resembles the one 
described in this paper. The essential difference between Dipprey's model and 
our own is that he treats the interstitial flow between the roughnesses as a two- 
dimensional cavity flow slowed down by friction within a thin layer adjacent to 
the surface of the roughness and separated from the main flow by a mixing 
region, whereas we regard the flow in the sublayer as essentially three-dimen- 
sional. In  this respect we consider Dipprey's model to be more appropriate to 
the widely spaced two-dimensional type of roughness favoured by nuclear 
engineers for heat exchangers. Also, he takes the stream-wise velocity at the 
outer edge of the sublayer (what we have called uh) to be 8.5uT, a suggestion 
which was rejected in $4. Dipprey in effect expresses his results in terms of 
B K (u, h/v)-" a-n, but the inclusion of the term 8 . 5 ~ ~  which would add S.5Um/uT 
to the left of (8) and (9) and 8.5U,/uT to the left of (10) leads to values of m and n 
roughly one-half as large as ours. 

All the measurements referred to above were analysed to give values of B, and 
figure 3 shows log,, ( l /B )  plotted against log,, (u, h/v). The lines drawn through 
the experimental points have aslope of 0.45 selected to give the best fit to Nunner's 
extensive measurements; treated individually, straight lines through each group 
of experimental points would have slopes varying from about 0.42 to 0.48. 

An attempt was made to discover whether any consistent value of Uh/uT could 
be inferred from the data. In  the case of a pipe, for example, ( 7 )  shows that 

Plots, not reproduced here, were made of the right-hand side of this equation, 
together with the corresponding expressions for a channel and flat plate, against 
powers of u, h/v varying from 0.4 to 0.5 to examine whether straight lines through 
the data converged to a point, or small region, as u,h/v approached zero. The 
most consistent behaviour was found when the exponent of u, h/v was 0.45 and 
here the region of convergence was so near the origin as to suggest that within 
the accuracy of the analysis Uh/u, could not be distinguished from zero, with the 
single exception of our measurements on a plate with reeded (two-dimensional) 
roughness for which uh was about 3u,. 

The strong dependence of B on v is evident in figure 3 from the vertical spread 
of the data, the value of 1/B increasing with v. The relation between B and v is 
rendered clearer by figure 4 where log,, [B-1(u,h/v)-o.45] deduced from figure 3 
is plotted against log,, CT. With the exception of Cope's measurements, which are 

t We are indebted to Drs Roshko and Sabersky for making Dipprey's thesis available 
to us. 
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FIGURE 3. The sublayer Stanton number: Reynolds number dependence. 

Reference 

Nunner 
Nunner 
Pinkel 
Lancet 
Cope 
Cope 
Owen, Thomson 
Owen, Thomson 
Dipprey 
Dipprey 
Dipprey 
Dipprey 

Flow 

Pipe 
Pipe 
Pipe 
Channel 
Pipe 
Pipe 
Plate 
Plate 
Pipe 
Pipe 
Pipe 
Pipe 

Roughness type 

Circderent id  rings 
Circumferential rings 
Helical rings 
Pyramids 
Pyramids 
Pyramids 
Spanwise humps 
Irregular pyramids 
Sand indentations 
Sand indentations 
Sand indentations 
Sand indentations 

U 

0.72 
0.72 
0.72 
0.72 
7.3 
7.6 
3.2 
3- 2 
1.2 
2.8 
4.4 
6.9 
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inexplicably high, the points fall within a band whose slope is 0.8. This suggests 
that (2) may be written 

1 I 
-0.4 -0.2 0 

-0.2- 

O /,’ 

)L 0.4 ’+ 

- 0.6 

with a lying between 0.45 and 0.7. 

/ 

I / I A  I I I 
0.2 / /  0.4 0.6 0.8 1.0 

/ 
/ log,, 0- 

/ 
/ 

A 
/ 

- 

- 

0 

The chain line in figure 4, for which a = 0.52, indicates the weighted mean of 
the band and its is suggested that in the absence of any guide from measurements 
on a particular surface this value of a may be used to provide an approximate 
estimate of the heat transfer rate. But in making this suggestion it must again 
be emphasized that our purpose has not been to establish a unique relation 
between B, (u, h/v)  and g-for we are convinced that one does not existt-but 
to test whether the experimental data are consistent with the simple model 
proposed and, more particularly, with the expression (2) for the sublayer 
Stanton number B, at least over the limited range of the variables explored. 

A further feature of figure 4 is the lack of any systematic difference in a 
between roughnesses of two- and three-dimensional character. 

7. Interpretation of the form of the sublayer Stanton number 

consistent with the postulated model of the sublayer. 

t Besides the influence of the roughness geometry on the fine structure of the flow in the 
sublayer, by defining the heat transfer coefficient with respect to unit area of the wall 
projected onto a surface parallel to the main stream we have glossed over the obvious effect 
of the roughness shape on the actual amount of surface exposed to the sublayer eddies. 

It remains to examine whether the relation B cc (u, h / ~ ) - o ~ ~  r o 8  is physically 
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As observed previously, the sublayer eddies are intrinsically part of the tur- 
bulent motion near the surface and may in fact be regarded as its energetic 
component. Fed with vorticity near the crests of the roughness, brought into 
being by strains imposed by the roughness elements, the eddies are retarded by 
friction at the solid surface. If it  is assumed that the retardation is accom- 
plished principally by viscous stresses it will be confined to a region adjacent to 
the surface of thickness O( vh/u,)*-a kind of (unsteady) viscous boundary layer 
embedded within the sublayer?-which, when the Prandtl number is unity, can 
also be identified as a thermal boundary layer. The corresponding rate of heat 
transfer is of order pcKAT/8,, where K is the thermometric conductivity, 6, is 
the thickness of the surface layer and AT is the temperature difference between 
the wall and the fluid in the outer part of the sublayer. Recalling that the 
sublayer Stanton number B is defined as the rate of heat transfer across unit area 
parallel to the main stream divided by pcu,AT, it  follows that B N (u,h/v)-*: 
approximately of the form established empirically in 9 6. 

To see what happens when the Prandtl number is significantly different from 
unity we shall consider the limiting case of cr > 1. Since this is equivalent to 
saying that K < v,  clearly the assumption that close to the surface of the rough- 
nesses viscous stresses are much larger than Reynolds stresses does not include 
the implication that throughout the same region turbulent heat transport 
can be ignored in comparison with molecular transport: on the contrary, it is 
only within the deepest part of that region, very close to the surface, that the 
heat transfer may be regarded as purely conductive. 

An estimate of the order of magnitude of the turbulent transport can be made 
by noting that adjacent to the surface the equations of motion and thermal 
energy reduce to 

where v,  p the pressure, and T are instantaneous values and y and v are measured 
perpendicular to the surface. In  casting the equations into the above simple 
form it is supposed that the dimension of the sublayer eddies in a direction per- 
pendicular to the surface is considerably smaller than their dimensions parallel 
to the surface. 

Using the continuity equation together with the conditions that the velocity 
and temperature fluctuations vanish a t  the solid, thermally conducting surface 
it is easy to show that the mean rate of turbulent heat transport is given by 

c a n  
2v ay p c z  = - (-) (%) y3+ .... 

Since pressure and temperature fluctuations within the sublayer are determined 
by the sublayer eddies whose velocity, length and temperature scales are typic- 
ally u,, h and AT we may write ap/ay ,., pu:/h and aT/ay ,., ATlh, so that the rate 
of turbulent transport takes the form 

p c v T  N pcu,AT(u,h/v) ( ~ / h ) ~ .  

f The experiments of Roshko (1955) confirm this argument in the case of a two-dimen- 
sional cavity flow. 
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The rapid increase in p e p  with increasing distance from the surface suggests 
that appreciable temperature gradients can occur only within the region where 
the rate of heat transport is controlled mainly by molecular conductivity. The 
thickness ST of this thermal boundary layer is therefore defined in order of 
magnitude by 

It follows that 
u,AT(u,h/v) (ST/h)3 N K ( A T / S ~ ) .  

g(u,h/Y)2(ST/h)4 N 1. 

The Stanton number B for the sublayer is proportional to K / u , S ~ ;  hence 
B N (u, h/v)-* g-2 which is close to the empirical expression B oc (u, h/~)-O*~'j v - O . ~ .  
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